15,632 research outputs found

    Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation

    Get PDF
    It has recently been shown [Weber, T. C. et al. (Year: 2007). “Acoustic propagation through clustered bubble clouds,” IEEE J. Ocean. Eng.32, 513–523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400kHz) multibeam sonar, and reports on observations of near-surface bubbleclustering during a storm ( 14.6m∕s wind speed) in the Gulf of Maine. The multibeam sonardata are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective mediumwave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350kHz . Results for this specific case show that clusteringcan cause the attenuation to change by 20%–80% over this frequency range

    A Method for Field Calibration of a Multibeam Echo Sounder

    Get PDF
    The use of multibeam echo sounders (MBES) has grown more frequent in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of these instruments is important for understanding and validating the performance of MBES. For echo sounders in general, different calibration methodologies have been developed in controlled environments such as a fresh water tank and in the actual field of operation. While calibration in an indoor tank facility can bring excellent results in terms of accuracy, the amount of time required for a complete calibration can become prohibitively large. A field calibration can reveal the actual radiation beam pattern for shipmounted sonar systems, accounting for acoustic interferences which may be caused by objects around the installed transducers. The standard target method is a common practice for field calibration of split-beam echo sounders. However, when applied to a Mills Cross MBES, this method does not provide means to determine the alongship angle of the target, since the receiver transducer is a line array. A method to determine the combined transmit/receive radiation beam pattern for a ship-mounted multibeam system was developed and tested for a Reson Seabat 7125 MBES inside the fresh water calibration tank of the University of New Hampshire. This calibration methodology employs a tungsten carbide sphere of 38.1 mm diameter as target and a Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. The multibeam sonar system was configured for 256 beams equi-angle mode at an operating frequency of 200 kHz; the split-beam system was set to work passively at the same frequency. A combined transmit/receive beam pattern was computed for an athwartship angular range between –6o and +6o and an alongship angular range between –1o and +3o . The limited angular range of the measurements is due to the –3 dB beamwidth of 7.1o in the athwartship and alongship directions of the split-beam sonar system coupled with the alongship offset of 1.6o between the maximum response axes (MRA) of the two sonar systems. Possible acoustic interferences caused by the monofilament line used to suspend the target sphere in the water column were found in the measurements for alongship angle values less than –1o . Beam pattern measurements for the combined transmit/receive beam pattern at a distance of 8 m show a –3 dB beamwidth of 1.1o in the athwartship direction and a –3 dB beamwidth of 2.0o in the alongship direction for the most inner beams. The dynamic range for the measurements was approximately of –40 dB

    Calibration of multibeam echo sounders: a comparison between two methodologies

    Get PDF
    Multibeam echo sounders (MBES) are widely used in applications like seafloor imaging, fisheries, and habitat mapping. Calibration of acoustic backscatter is an important aspect of understanding and validating the performance of a MBES. Combined transmit/receive beampattern calibrations were performed on a 200 kHz Reson Seabat 7125 MBES in the acoustic tank of the University of New Hampshire utilizing two different methodologies. The first methodology employs fixed standard target spheres and a high accuracy/high resolution rotation mechanism. This method, similar to that proposed by Foote et al [ Protocols forcalibrating multibeam sonar , J. Acoust. Soc. Am. 117(4), 2005], is designed for a calibrationtank and provides accurate results but requires a large amount of operation time and cannot be performed in situ. The second methodology has been designed for field calibration of MBES. It employs a standard target sphere and a 200 kHz Simrad EK60 split-beam sonar system to provide athwartship and alongship angular information of the target sphere position. This method offers the possibility of field calibration for vessel mounted systems and a significantly reduced operation time, but has a potential reduction in accuracy. In this paper, results from these two methods applied to the same MBES are compared

    High Resolution Calibration of a Multibeam Echo Sounder

    Get PDF
    Calibration can greatly increase the utility of collecting seafloor backscattering strength with multibeam echo sounders (MBES). A calibration procedure to determine high resolution, three dimensional transmit and receive beam patterns of a Reson SeaBat 7125 MBES was performed using the fresh water calibration tank at the University of New Hampshire. The measurements employed an omni-directional Reson TC4034 projector/hydrophone as a reference transducer at an acoustic distance of 13 m. The multibeam sonar system was configured for 256 beams equi-angle mode and operating frequency of 396 kHz. The transmit beam pattern was computed for across-track angular range between +/–90o in 0.1o increments and along-track angular range between +/–2.55o in 0.09o increments. Receive directional characteristics were measured for the across-track range of +/–120o in 0.1o increments with along-track angular range of +/–1.23o in 0.18o increments. With these measurements, a three-dimensional plot of the transmit beam pattern was computed for the entire range of angles, although for the receive beam pattern it was only determined for the 0o along-track angle. The reduced angular coverage of the receive beam pattern was due to discrepancies in the off-axis results that are thought to be related to receiver saturation. Measurements for the transmit beam pattern show a –3 dB beamwidth of 0.99o for across-track angle of 0o with side lobes below –17 dB. The results show an unexplained curvature in the transmit beam pattern that would have gone un-noticed during a two dimensional beam pattern measurement. An interference effect causing ripples and attenuation of the transmit beam pattern was also observed. This effect is thought to be caused by a second 200 kHz projector mounted parallel to the 396 kHz projector. This interference occurs at an across-track angular region between +30o and +75o with gradual decrease in amplitude of about 3 dB. The receive beam pattern measurements show a –3 dB beamwidth of approximately 0.62o for the most inner beams (beams 128 and 129) and of approximately 1.40o for the most outer beams (beams 1 and 256) at along-track angular position of 0o with side-lobes below –26 dB for the most inner beams and below –17 dB for the most outer beams

    Observations of Backscatter from Sand and Gravel Seafloors Between 170-250 kHz

    Get PDF
    Interpreting observations of frequency-dependence in backscatter from the seafloor offers many challenges, either because multiple frequencies are used for different observations that will later be merged or simply because seafloor scattering models are not well-understood above 100 kHz. Hindering the understanding of these observations is the paucity of reported, calibratedacoustic measurements above 100 kHz. This manuscript seeks to help elucidate the linkages between seafloor properties and frequency-dependent seafloor backscatter by describing observations of backscatter collected from sand, gravel, and bedrock seafloors at frequencies between 170 and 250 kHz and at a grazing angle of 45°. Overall, the frequency dependence appeared weak for all seafloor types, with a slight increase in seafloor scattering strength with increasing frequency for an area with unimodal, very poorly to moderately well sorted, slightly granular to granular medium sand with significant amounts of shell debris and a slight decrease in all other locations

    Using Multibeam Echosounders for Hydrographic Surveying in the Water Column: Estimating Wreck Least Depths

    Get PDF
    Wreck superstructure can extend into the water column and pose a danger to navigation if the least depth is not accurately portrayed to mariners. NOAA has several methods available to acquire a wreck least depth: lead line, wire drag, diver investigation, side scan shadow length, single beam bathymetry, and multibeam bathymetry. Previous studies have demonstrated that the bottom detection algorithm can fail to locate a wreck mast that is evident in the water column data. Modern multibeam sonars can record water column data in addition to bottom detections. NOAA’s current Hydrographic Specifications do not require water column collection; the best practice is to collect additional bathymetry data during wreck developments. Several multibeam bathymetry and multibeam water column datasets collected by NOAA vessels are evaluated and the wreck least depth results are compared to previous international field trials. A workflow to extract filtered and sidelobe suppressed water column point clouds is presented using currently available software packages. This paper explores the challenges encountered with water column data collection and processing and finds that analysis of water column data provides an improvement to finding wreck least depths, in some cases

    Observations of High Frequency, Long Range Acoustic Propagation in a Harbor Environment

    Get PDF
    The positioning and navigation of AUV\u27s in harbor environments using underwater acoustics is complicated by shallow waters, long propagation distances, and complex oceanographic features. This paper reports on high frequency (40 kHz) acoustic measurements made in Portsmouth Harbor, NH, USA, which is an estuary containing several riverine inputs and a strong tidal flow (2+ knots). A one-way propagation experiment was conducted at the mouth of the harbor for propagation distances up to 100 water depths. Strong signatures of a variety of phenomenon were observed in the acoustic signal levels, including tidal heights and currents, turbulent mixing, and wind/wave action. The relative importance of each of these will be discussed in terms of signal to noise level and the associated constraints on acoustic positioning systems

    Split-beam echosounder observations of natural methane seep variability in the northern Gulf of Mexico

    Get PDF
    A method for positioning and characterizing plumes of bubbles from marine gas seeps using an 18 kHz scientific split-beam echo sounder (SBES) was developed and applied to acoustic observations of plumes of presumed methane gas bubbles originating at approximately 1400 m depth in the northern Gulf of Mexico. A total of 161 plume observations from 27 repeat surveys were grouped by proximity into 35 clusters of gas vent positions on the seafloor. Profiles of acoustic target strength per vertical meter of plume height were calculated with compensation for both the SBES beam pattern and the geometry of plume ensonification. These profiles were used as indicators of the relative fluxes and fates of gas bubbles acoustically observable at 18 kHz and showed significant variability between repeat observations at time intervals of 1 h–7.5 months. Active gas venting was observed during approximately one third of the survey passes at each cluster. While gas flux is not estimated directly in this study owing to lack of bubble size distribution data, repeat surveys at active seep sites showed variations in acoustic response that suggest relative changes in gas flux of up to 1 order of magnitude over time scales of hours. The minimum depths of acoustic plume observations at 18 kHz averaged 875 m and frequently coincided with increased amplitudes of acoustic returns in layers of biological scatterers, suggesting acoustic masking of the gas bubble plumes in these layers. Minimum plume depth estimates were limited by the SBES field of view in only five instances

    Optimizing Resolution and Uncertainty in Bathymetric Sonar Systems

    Get PDF
    Bathymetric sonar systems (whether multibeam or phase-differencing sidescan) contain an inherent trade-off between resolution and uncertainty. Systems are traditionally designed with a fixed spatial resolution, and the parameter settings are optimized to minimize the uncertainty in the soundings within that constraint. By fixing the spatial resolution of the system, current generation sonars operate sub-optimally when the SNR is high, producing soundings with lower resolution than is supportable by the data, and inefficiently when the SNR is low, producing high-uncertainty soundings of little value. Here we propose fixing the sounding measurement uncertainty instead, and optimizing the resolution of the system within that uncertainty constraint. Fixing the sounding measurement uncertainty produces a swath with a variable number of bathymetric estimates per ping, in which each estimate’s spatial resolution is optimized by combining measurements only until the desired depth uncertainty is achieved. When the signal to noise ratio is sufficiently high such that the desired depth uncertainty is achieved with individual measurements, bathymetric estimates are produced at the sonar’s full resolution capability. Correspondingly, a sonar’s resolution is no-longer only considered as a property of the sonar (based on, for example, beamwidth and bandwidth,) but now incorporates geometrical aspects of the measurements and environmental factors (e.g., seafloor scattering strength). Examples are shown from both multibeam and phase- differencing sonar systems

    Acoustic Scattering from Mud Volcanoes and Carbonate Mounts

    Get PDF
    Submarine mud volcanoes occur in many parts of the world’s oceans and form an aperture for gas and fluidized mud emission from within the earth’s crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering10–15dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4–14dB were observed from 800to3600Hz for a monostatic geometry with grazing angles of 3–5°. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3–5° and 33–50°, respectively
    corecore